Quantum tomography with wavelet transform in Banach space on Homogeneous space
نویسنده
چکیده
The intimate connection between the Banach space wavelet reconstruction method on homogeneous spaces with both singular and nonsingular vacuum vectors, and some of well known quantum tomographies, such as: Moyal-representation for a spin, discrete phase space tomography, tomography of a free particle, Homodyne tomography, phase space tomography and SU(1,1) tomography is explained. Also both the atomic decomposition and banach frame nature of these quantum tomographic examples is explained in details. E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 Finally the connection between the wavelet formalism on Banach space and Q-function is discussed.
منابع مشابه
Frames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملWeighted Coorbit Spaces and Banach Frames on Homogeneous Spaces
This article is concerned with frame constructions on domains and manifolds. The starting point is a unitary group representation which is square integrable modulo a suitable subgroup and therefore gives rise to a generalized continuous wavelet transform. Then generalized coorbit spaces can be defined by collecting all functions for which this wavelet transform is contained in a weighted Lp-spa...
متن کاملFrames and Coorbit Theory on Homogeneous Spaces with a Special Guidance on the Sphere
The topic of this article is a generalization of the theory of coorbit spaces and related frame constructions to Banach spaces of functions or distributions over domains and manifolds. As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical considerations allow first to introduce generalized wavelet transforms. These are then used to define coorbit spaces ...
متن کاملA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملDamage identification of structures using experimental modal analysis and continuous wavelet transform
Abstract: Modal analysis is a powerful technique for understanding the behavior and performance of structures. Modal analysis can be conducted via artificial excitation, e.g. shaker or instrument hammer excitation. Input force and output responses are measured. That is normally referred to as experimental modal analysis (EMA). EMA consists of three steps: data acquisition, system identificatio...
متن کامل